
Review Question

How long (in minutes) will it take to
download a 3GB file over a 100Mb/s Fibre
connection?

3GB * 1000(MB) = 3000MB
100Mb/s / 8 = 12.5MB/s
3000MB / 12.5MB/s = 240 seconds
240s / 60s = 4 minutes

The OSI Application and
Transport Layers

ICT169

Foundations of Data
Communications

• Most students should now be
enrolled in a lab

• Contact me if you’re still unable to
enrol

• All labs are now in 245.3.064
(SC3.064)

• Tutor emails will be distributed in
the labs this week

• Student card access to the
computer labs should be coming
in the next two weeks

Admin – A Quick Update

• Participation is not assessed in the lab sessions, but
through weekly LMS-based quizzes

• Around 3 long answer questions per quiz

• Not marked on correctness, but rather whether you have
made a clear attempt to answer the question

• Answers must be your own work – no copying from
Internet sources or other students will be permitted

• While content will be from lectures and labs, some
additional reading may be required

• Quizzes will be due the at end of the following week; Quiz 1
due Sunday (12 August)

Participation Quizzes – A
Reminder

• Broad overview of data communications

• Introduced important data
communications concepts:

• The OSI and TCP/IP networking
models

• Circuit and Packet switching

• Network convergence

• Different types of networks and
network traffic

• Network speeds and data storage

• Each week, we’ll move further down the
OSI model

Last Week

• More on the Application, Presentation,
and Session layers of the OSI model

• Introduce widely used applications and
services:

• Domain Name System (DNS)

• Hypertext Transfer Protocol (HTTP)

• File Transfer Protocol (FTP)

• Dynamic Host Configuration Protocol
(DHCP)

• The Transport Layer and associated
protocols (TCP and UDP)

Lecture Overview

• Applications provide the means to generate and receive
data that is to be transported over the network

• Applications are the software tools end-users see interact
with; the lower layers should be transparent to most users

Applications

• Presentation Layer

• Coding and conversion of application layer data to ensure that
data from source can be interpreted by destination

• Think file formats: MPEG, JPEG, PNG, PDF, AVI, DOC, MP4,
DOCX

• Session Layer

• The session layer handles the exchange of information to
initiate, restart, keep alive and terminate conversations

• Examples: VPN protocols (PPTP, L2TP)

Presentation and Session Layers

• Most applications provide all application, presentation and
session layer functions (similar to TCP/IP model)

Applications in the Real World

• Traditional (and still most common) communications model
used in modern data networks

• End-user devices (eg. PCs, tablets, phones) generally
assume the role of the client

• Dedicated servers provide content and services

Application Models – Client /
Server

• Comparatively new model for applications

• Devices act as both client and server.

• Examples: BitTorrent (filesharing), Skype (voice and video

communication)

• P2P services still rely on centralized services (eg. BitTorrent
trackers)

• Data is transmitted directly between machines; no
server(s) needed.

Application Models – Peer-to-Peer
(P2P)

Applications

• Translates between human readable domain names (eg.
“cisco.com”) and the associated network IP address (such
as 198.133.219.25)

• DNS is a hierarchical system

• Uses UDP (or TCP) port 53

Domain Name System (DNS)

• Two different types of top level domain (TLD)

• gTLD = general TLD, for example .com

• ccTLD = country code TLD, for example .au

DNS Hierarchy

Source: http://archive.icann.org/en/tlds/org/applications/uia/C17 10.html

• DNS lookup for www.example.com

DNS Operation

• Used to retrieve content from web servers

• HTTP GET is generated when URL is entered into the web
browser

• Web server should respond with the requested page

• HTTP POST and PUT messages are used to send data to a
web server (such as forms)

• Uses TCP port 80

Hypertext Transfer Protocol
(HTTP)

• Traditionally used for
downloading and uploading
large files over the Internet

• Designed for transferring
data rather than displaying
content

• Uses two ports:

• TCP port 20 for the
transfer of data

• TCP port 21 for command
and control

File Transfer Protocol (FTP)

• Used to obtain an IP address ‘automatically’ from the
network

• Four step process to obtain an IP address

• Most home routers have DHCP active by default

• Uses two ports:

• UDP port 67 for requests sent by the client.

• UDP port 68 for responses from the server.

Dynamic Host Configuration
Protocol (DHCP)

• Used to provide an interactive
command line

• Typically used for remote
management of network devices
and servers

• Telnet is an old protocol
(developed in 1969) and
transmits in cleartext

• Not secure and disabled in many operating systems

• Superseded by SSH

• Uses TCP port 23

Telnet

• Also used to provide an interactive command line for
remote management

• Encrypts all session data to prevent third parties from
reading any intercepted data

• Uses TCP port 22

Secure Shell (SSH)

• Used for sending and receiving
email between mail servers

• Also used for sending email from
a client to a mail server

• Uses TCP port 25
(can also use TCP ports
465 and 587)

• For receiving mail, use:

• Post Office Protocol (POP)
on TCP port 110

• Internet Message Access
Protocol (IMAP) on
TCP port 143

Simple Mail Transfer Protocol
(SMTP)

Source: www.serversmtp.com

Break
When we return: The Transport Layer

• Segments application data into transportable chunks for
transmission

• Uses ports to track individual conversations and identify
applications

• Can reassemble segments and provide reliability

• Different transport layer
protocols are used to cater
to differing requirements of
applications

• Often referred to as an
end-to-end concept

The Transport Layer

• Don’t exist physically; ports are a logical concept used by
operating systems for identification of different applications

• Ports are identical, but some are ‘recognised’ for use by
specific applications (eg. TCP port 80 is recognised as HTTP)

• Some applications can have multiple port numbers (eg.
HTTP can also used port 8080)

Ports – Addressing at the
Transport Layer

• Port number is a 16-bit integer value (0—65535)

• Three classes of ports:

• Well known ports (0–1023) for common services and
applications.

• Examples: HTTP → Port 80, SMTP → Port 25

• Registered ports (1024—49151) for less commonly used
services or applications

• Examples: OpenVPN → Port 1194, SIP → Port 5060

• Dynamic / Private ports (49152—65535) for client-
initiated sessions

• Full list available:
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Ports (cont.)

• Clients use private ports to initiate sessions

• The source port does not need to match the destination
port

Ports Use Example

• Two most common transport layer protocols: Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP)

• TCP is used when the delivery of data must be reliable

• File downloads

• Loading webpages

• UDP is used when the delivery of data must be timely

• Voice and video communications

• Online games

• Other protocols exist but are not widely used

• Stream Control Transmission Protocol (SCTP)

• Datagram Congestion Control Protocol (DCCP)

Transport Layer Protocols

• TCP is a connection-oriented protocol, meaning that
communications between two devices must be explicitly
initiated and terminated

• Not all transport layer protocols are connection-oriented

• Connection setup consists of three steps: SYN, SYN-ACK,
and ACK

• Process known
as three-way
handshake

Transmission Control Protocol
(TCP)

• When a conversation is complete, the connection is
terminated using a four step process

• Consists of FIN, ACK, FIN, and ACK

• Unlike in the three-way handshake, the FIN and ACK sent
by host B are actually two separate steps

Transmission Control Protocol
(cont.)

• TCP provides in-order delivery of segments to application
by using sequence numbers

TCP In-Order Delivery

• TCP sequence numbers are
used in conjunction with
acknowledgements (ACKs)
to provide reliability

• All data transmitted using TCP
must be acknowledged

• An ACK is cumulative, meaning
that it also acknowledges all
preceding segments

• Receivers always acknowledge
next expected byte

TCP Reliable Transport

• When segments are not
ACKed, they must be
retransmitted by the
sender

• Segments can be lost due
to network congestion or
interruptions to the
medium

TCP Reliable Transport (cont.)

• TCP uses congestion control to manage the rate of
transmission

• TCP congestion window specifies number of
unacknowledged segments that can be in-flight from sender
to receiver

• Why use congestion control?

• What if TCP senders could only send one packet at a time
without ack? If round trip delay between sender and receiver
was 200ms, TCP could send 5 packets per second. Very slow.

• What if TCP senders could send as fast as LAN connection
permits (eg. 1000Mb/s)? Gateway to Internet is bottleneck
and unable to handle load. Congestion (packets may be
dropped)

TCP Congestion Control

• Consider that we share resources with many other users

• Fibre links between continents carry traffic from millions of
concurrent TCP connections

• How does a TCP sender finds perfect rate – Fair share of
100% utilised bottleneck link speed?

TCP Congestion Control (cont.)

• Slow Start (not that slow)

• Start with initial congestion window of 2 (or 10) segments

• Sender increases congestion window by 1 segment for every
packet acknowledged by receiver

• Quickly increase throughput up to max possible fair share

• When sender detects packet loss it halves window and goes
into

• Congestion Avoidance

• Without loss increase window by 1 segment each round trip
time

• When sender transmits too fast and congests low speed link,
router connected to low speed link will drop packets

• When sender detects packet loss it halves window

• Quickly shrinking window will quickly reduce throughput of
connection and congestion on the bottleneck

TCP Congestion Control Algorithm
– NewReno

TCP Congestion Control in Action

Slow start

Congestion Avoidance

• Congestion occurs when number of packets arriving at
router is higher than number of packets that can be send
on next link

• Router buffers outgoing packets, but when buffer is filled
the router must drop packets

Buffering on the Network

• Router buffers are usually quite small, so let’s increase
them! Problem solved!

• This is what people actually used to think for years

• Leads to problem called Bufferbloat

Buffering on the Network (cont.)

• If we increase buffer sizes, network latency will also be
increased

• NewReno will always fill buffers to capacity

• Larger buffers take longer to clear

• Applications that require reliability might also need low
latency (eg. stock trading)

• Could also interfere with some TCP congestion control
mechanisms

Bufferbloat

• You’ve heard about NewReno, which has been the standard
congestion control mechanism for some time

• Still used by Windows (and macOS until recently)

• There are dozens (if not hundreds) of different algorithms

• Linux and macOS use CUBIC by default

• Not all aim for maximum performance

• Some algorithms use estimates of network delay as an
indicator of congestion

• This is a highly active research area in data communications

TCP Congestion Control

• What if routers actively tell TCP senders that there is
congestion at configurable buffer delays?

• Active Queue Management (AQM) and TCP Early
Congestion Notification (ECN)

• Router marks packets when queue length or estimated delay
is above threshold

• TCP receiver echoes marks to TCP sender

• TCP sender reduces congestion window

Active Queue Management

• Similar to congestion control, but prevents the sender from
overflowing the receiver (instead of the whole network)

• The receiver advertises a receive window; the number of
bytes it will accept before the next acknowledgement or
window update

• Uses a windowing mechanism much like congestion control

• Sender will be restricted to the minimum of the congestion
window and receive window

TCP Flow Control

• Recall that UDP is used when data must arrive in a timely
manner

• Unlike TCP, UDP is a connectionless protocol

• ‘Best effort’ protocol, and has no equivalent to TCP
acknowledgements

• Not necessarily less reliable, just not guaranteed

• Datagrams may also arrive out of order

• No congestion or flow control

• Low per-packet overhead (simpler and smaller header)

User Datagram Protocol (UDP)

UDP will not reassemble data back into order and will not
resend lost datagrams because it is connectionless and
unreliable

UDP Reliability

• So why would an application use an unreliable service?

• Answer 1: Because resent data is useless and additional
delay should be avoided

• Teleconferencing/Skype – Additional delay for retransmissions
more annoying than little dropouts

• Online Games – No point in resending packets after action
has already happened. Or would you like “laggy” game that
pauses on packet loss?

• Answer 2: TCP is too complex or has too many overheads

• Full TCP implementation may be too complex for machine
with slow CPU, low RAM

• Application can implement a simpler acknowledgement
scheme on top of UDP to transport data

• Example: Trivial File Transfer Protocol (TFTP)

Why Use UDP?

• So why would an application use an unreliable service?

• Answer 3: UDP is connectionless and will not setup and
teardown connection like TCP

• Setting up and tearing down a TCP connection requires a
minimum of 6 packets - unnecessary bandwidth usage

• Setting up connection requires server to maintain state of
connection - unnecessary CPU/RAM usage

• For frequent short message exchanges, it is more efficient
(and cheaper) in terms of bandwidth and server resources to
use UDP

• Example: DNS – Servers have to deal with thousands of
requests per second. DNS request plus reply is only two
packets, 1/4 of packet we would need with TCP. Plus flow and
congestion control are useless for these short flows

Why Use UDP? (cont.)

TCP Header

UDP Header

UDP and TCP Protocol Headers

Source: Wikipedia

• Neither protocol is better, it is about what's appropriate

• Application developers must decide what to use

TCP vs. UDP

You should now be able to:

• Describe the role of the OSI Application, Presentation, and Session
layers.

• Describe the Client/Server and Peer-to-Peer architectures.

• Describe the purpose of some widely used application layer
protocols.

• Describe the purpose of the OSI Transport layer.

• Define ports with respect to the transport layer.

• Differentiate between the reliable and unreliable delivery of data.

• Describe the operation of the Transmission Control Protocol and
User Datagram Protocol.

• Identify when it is appropriate to use each transport layer
protocol.

Lecture Objectives

• Today’s lecture has examined the roles of the Application,
Presentation and Session layers. The two major
architectures for communications were also described.

• The purpose of the Transport layer was also examined.
Specifically, in relation to TCP and UDP

• The readings for this week are Introduction to Networks –
Chapters 9 and 10

• Participation Quiz 1 due this Sunday!

• In the labs: examining network traffic using Wireshark

Lecture Summary and the Week
Ahead

• We will continue descending the OSI model. Next up, the
Network layer.

• Specifically, we will focus on IP addressing and subnetting.
We will also start discussing the role of routers in data
communications.

• Please make sure you bring a pen and paper!

Next Week

